Coupled map lattice approximations for spatially explicit individual-based models of ecology.

نویسندگان

  • A Brännström
  • D J T Sumpter
چکیده

Spatially explicit individual-based models are widely used in ecology but they are often difficult to treat analytically. Despite their intractability they often exhibit clear temporal and spatial patterning. We demonstrate how a spatially explicit individual-based model of scramble competition with local dispersal can be approximated by a stochastic coupled map lattice. The approximation disentangles the deterministic and stochastic element of local interaction and dispersal. We are thus able to understand the individual-based model through a simplified set of equations. In particular, we demonstrate that demographic noise leads to increased stability in the dynamics of locally dispersing single-species populations. The coupled map lattice approximation has general application to a range of spatially explicit individual-based models. It provides a new alternative to current approximation techniques, such as the method of moments and reaction-diffusion approximation, that captures both stochastic effects and large-scale patterning arising in individual-based models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatially Explicit Population Models: Current Forms and Future Uses

Spatially explicit population models are becoming increasingly useful tools for population ecologists, conservation biologists, and land managers. Models are spatially explicit when they combine a population simulator with a landscape map that describes the spatial distribution of landscape features. With this map, the locations of habitat patches, individuals, and other items of interest are e...

متن کامل

Kato's chaos and P-chaos of a coupled lattice system given by Garcia Guirao and Lampart which is related with Belusov-Zhabotinskii reaction

In this article, we further consider the above system. In particular, we give a sufficient condition under which the above system is Kato chaotic for $eta=0$ and a necessary condition for the above system to be Kato chaotic for $eta=0$. Moreover, it is deduced that for $eta=0$, if $Theta$ is P-chaotic then so is this system, where a continuous map $Theta$ from a compact metric space $Z$ to itse...

متن کامل

Stabilization of Causally and Non–Causally Coupled Map Lattices

Two-dimensional coupled map lattices have global stability properties that depend on the coupling between individual maps and their neighborhood. The action of the neighborhood on individual maps can be implemented in terms of “causal” coupling (to spatially distant past states) or “non-causal” coupling (to spatially distant simultaneous states). In this contribution we show that globally stabl...

متن کامل

Equilibrium Measures for Coupled Map Lattices: Existence, Uniqueness and Finite-Dimensional Approximations

We consider coupled map lattices of hyperbolic type, i.e., chains of weakly interacting hyperbolic sets (attractors) over multi-dimensional lattices. We describe thermodynamic formalism of the underlying spin lattice system and then prove existence, uniqueness, mixing properties, and exponential decay of correlations of equilibrium measures for a class of Holder continuous potential functions ...

متن کامل

Route to chaotic synchronisation in coupled map lattices: Rigorous results

Two-dimensional mappings obtained by coupling two piecewise increasing expanding maps are considered. Their dynamics is described when the coupling parameter increases in the expanding domain. By introducing a coding and by analysing an admissibility condition, approximations of the corresponding symbolic systems are obtained. These approximations imply that the topological entropy is located b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 67 4  شماره 

صفحات  -

تاریخ انتشار 2005